Answer is: 6
\(\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k}\)
\(\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}\)
\(\overrightarrow{\mathrm{d}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}\)
\(=-\hat{i}+\hat{j}\)
\(|\overrightarrow{\mathbf{c}}-2 \overrightarrow{\mathrm{a}}|^{2}=8\)
\(|c|^{2}+4|a|^{2}-4(a . c)=8\)
\(c^{2}+12-4 c=8\)
\(c^{2}-4 \mathrm{c}+4=0\)
\(|c|=2\)
\(\overrightarrow{\mathrm{d}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}\)
\(\overrightarrow{\mathrm{d}} \times \overrightarrow{\mathrm{c}}=(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}}\)
\(\left(|\mathrm{d}||\mathrm{c}| \sin \frac{\pi}{4}\right)^{2}=((\mathrm{a} . \mathrm{c}) \cdot \mathrm{b}-(\mathrm{b} . \mathrm{c}) \cdot \mathrm{a})^{2}\)
\(4=4 b^{2}+(b . c)^{2} 2(a)^{2}-2(b . c)(a . b) \)
Let b. c = x
\(4=36+3 x^{2}-20 x\)
\(3 x^{2}-20 x+32=0\)
\(3 x^{2}-12 x-8 x+32=0\)
\(\mathrm{x}=\frac{8}{3}, 4\)
b.c \(=\frac{8}{3}, 4\)
b.c \(=\frac{8}{3}\)
Now \(|10-3 \mathrm{~b} . \mathrm{c}|+|\mathrm{d} \times \mathrm{c}|^{2}\)
\(|10-8|+(2)^{2}\)
\(\Rightarrow 6\)