Given,
5 Cot A = 3
Cot A = \(\frac{3}{5}\)
\(\frac{1}{tan A} = \frac{3}{5}\)
tan A = \(\frac{5}{3}\)
Now,
\(\frac{5sin A - 3cosA}{4sinA + 3cosA}\)
= \(\frac{5 \frac{sinA}{cos A}-3 \frac{cosA}{cos A}}{4 \frac{sinA}{cos A}+ 3 \frac{cosA}{cos A}}\) [dividing numerators and denominator by cos A]
= \(\frac{5tan A - 3}{4tan A + 3}\)
= \(\frac{5 \times \frac{5}{3} - 3}{4 \times \frac{5}{3}+3}\)
= \(\frac{\frac{25-9}{3}}{\frac{20+9}{3}}\)
= \(\frac{16}{29}\)