Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
3.0k views
in Mathematics by (55.9k points)
closed by

The integral \(80 \int \limits_{0}^{\frac{\pi}{4}}\left(\frac{\sin \theta+\cos \theta}{9+16 \sin 2 \theta}\right) d \theta\) is equal to :

(1) \(3 \log _{\mathrm{e}} 4\)

(2) \(6 \log _{\mathrm{e}} 4\)

(3) \(4 \log _{e} 3\)

(4) \(2 \log _{\mathrm{e}} 3\) 

1 Answer

+1 vote
by (51.4k points)
selected by
 
Best answer

Correct option is (3) \(4 \log _{e} 3\)   

\(I=80 \int\limits_{0}^{\frac{\pi}{4}}\left(\frac{\sin \theta+\cos \theta}{9+16(2 \sin \theta \cdot \cos \theta)}\right) d \theta\)

\(=80 \int\limits_{0}^{\frac{\pi}{4}} \frac{\sin \theta+\cos \theta}{9-16(1-2 \sin \theta \cdot \cos \theta-1)} d \theta\)

\(=80 \int\limits_{0}^{\frac{\pi}{4}} \frac{\sin \theta+\cos \theta}{9+16-16(\sin \theta-\cos \theta)^{2}} d \theta\)

Let \(\sin \theta-\cos \theta=\mathrm{t}\)

\((\cos \theta+\sin \theta) d \theta=d t\)

\(=80 \int\limits_{-1}^{0} \frac{\mathrm{dt}}{25-16 \mathrm{t}^{2}}\)

\(=\frac{80}{16} \int\limits_{-1}^{0} \frac{\mathrm{dt}}{\left(\frac{5}{4}\right)^{2}-\mathrm{t}^{2}}\)

\(\left.=\frac{5}{2\left(\frac{5}{4}\right)} \text{ln} \left|\frac{\frac{5}{4}+t}{\frac{5}{4}-t}\right|\right]_{-1}^{0}\)

\(=2 \text{ln} (1)+4 \text{l}n 3\)

\(=4 \text{ln} 3\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...