Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
342 views
in Mathematics by (45.3k points)
closed by

If \(\lim _{t \rightarrow 0}\left(\int_0^1(3 x+5)^t d x\right)^{\frac{1}{t}}=\frac{\alpha}{5 e}\left(\frac{8}{5}\right)^{\frac{2}{3}},\) then \(\alpha\) is equal to _______.

1 Answer

+1 vote
by (44.8k points)
selected by
 
Best answer

Answer is: 64  

\(\frac{\alpha}{5 e}=\exp \left(\lim _{t \rightarrow 0} \frac{1}{t}\left(\int_0^1(3 x+5)^t d x-1\right)\right) \)

\(=\exp \left(\lim _{t \rightarrow 0} \frac{1}{t}\left(\frac{(3 x+5)^{t+1}}{3(t+1)}\right)_0^1-1\right) \)

\(=\exp \left(\lim _{t \rightarrow 0} \frac{1}{t}\left(\frac{8^{t+1}-5^{t+1}}{3(t+1)}-1\right)\right) \)

\(=\exp \left(\lim _{t \rightarrow 0} \frac{1}{t}\left(\frac{8^{t+1}-5^{t+1}-3 t-3}{3(t+1)}\right)\right) \)

\( =\exp \left(\lim _{t \rightarrow 0}\left(\frac{8^{t+1} \cdot \ell n 8-5^{t+1} \ell n 5-3}{3(t+1)}\right)\right) \)

\(=\exp \left(\frac{\ell n 8^8-\ell n 5^5-3}{5}\right) \)

\( =\left(\frac{8}{5}\right)^{2 / 3} \frac{\alpha}{5 e}=\exp \left(\frac{\ell n \left(\frac{8^8}{5^5}\right)}{5}-1\right) \)

\( \Rightarrow\left(\frac{8}{5}\right)^{2 / 3} \frac{\alpha}{5}=\left(\frac{8^8}{5^5}\right)^{1 / 3}=\left(\frac{8^6 \cdot 8^2}{5^3 \cdot 5^2}\right)^{1 / 3}=\frac{64}{5}\left(\frac{8}{5}\right)^{2 / 3} \)

\(\Rightarrow \alpha=64\)  

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...