
Let AE = x

CD = CE = 10
Tangents from same external point
Using Herons Formula
ar \((\Delta ABC) = \sqrt{(x+16)\times x\times10 \times 6}\)
also ar\((\Delta ABC) = ar(AOB) + ar(BOC) + ar(\Delta AOC)\)
= \(\frac{1}{2} \times 4 \times (x+6) + \frac{1}{2} \times 4 \times (16) + \frac{1}{2} \times 4 \times (x+10)\)
= \(\frac{1}{2} \times 4 [ x+ 6 +16+x+10]\)
= 2(32 +2x) = 4 (x+16)
\(4(x+16) = \sqrt{(x+16)\times 10\times6 \times x}\) [using Heron's formula]
Squaring both sides we get
16(x + 16)2 = x(x + 16) × 10 × 6
4(x + 16)= 15x
4x + 64 = 15x
11x = 64
\(x = \frac{64}{11}\)