Correct option is: (3) 11
\(\sum_\limits{k=1}^{12} a_{2 k-1}=-\frac{72}{5} a_{1}\)
\(a_{1}+a_{3}+\cdots+a_{23}=-\frac{72}{5} a_{1}\)
\(a+a+2 d+\cdots+a+22 d=-\frac{72}{5} a\)
\(12 a+2 d(1+2+\cdots 11)=-\frac{72}{5} a\)
\(\Rightarrow 12 a+2 d\left(\frac{11 \times 12}{2}\right)=-\frac{72}{5} a\)
\(\Rightarrow 132 d=-\frac{132}{5} a\)
\(\Rightarrow a=-5 d \) .....(i)
Also \(\sum_\limits{k=1}^{n} a_{k}=0\)
\(\Rightarrow S_{n}=0\)
\(\Rightarrow \frac{n}{2}[2 a+(n-1) d]=0\)
\(\Rightarrow 2 a=-(n-1) d \) ......(ii)
From equation (i) and (ii)
(n - 1)d = 10d
\(\therefore n=11\)