Answer is: 120
\(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad \cdots(1)\)
\(\mathrm{P}(4,2 \sqrt{3})\)
\(\mathrm{PS}_{1} \cdot \mathrm{PS}_{2}=32\)
\(\left|\mathrm{PS}_{1}-\mathrm{PS}_{2}\right|=2 \mathrm{a}\)
\(\mathrm{P}(4,2 \sqrt{3})\) lies on H
\(\therefore \frac{16}{\mathrm{a}^{2}}-\frac{12}{\mathrm{~b}^{2}}=1\)
\(16 b^{2}-12 a^{2}=a^{2} b^{2}\quad \cdots(2)\)
\(\left|\mathrm{PS}_{1}-\mathrm{PS}_{2}\right|^{2}=4 \mathrm{a}^{2}\)
\(\mathrm{PS}_{1}{ }^{2}+\mathrm{PS}_{2}^{2}-2 \mathrm{PS}_{1} \cdot \mathrm{PS}_{2}=4 \mathrm{a}^{2}\)
\((a e-4)^{2}+12+(a e+4)^{2}+12-64=4 a^{2}\)
\(2 \mathrm{a}^{2} \mathrm{e}^{2}-8=4 \mathrm{a}^{2}\)
\(a^{2}+b^{2}-4=2 a^{2}\)
\(b^{2}-a^{2}=4\)
\((2)\ \& \ (3) \Rightarrow 16\left(a^{2}+4\right)-12 a^{2}=a^{2}\left(a^{2}+4\right)\)
\(\Rightarrow 16 a^{2}+64-12 a^{2}=a^{4}+4 a^{2}\)
\(\Rightarrow a^{4}=64\)
\(\Rightarrow \mathrm{a}^{2}=8\)
\(\therefore \mathrm{b}^{2}=12\)
\(p^{2}+q^{2}=4 b^{2}+\frac{4 b^{4}}{a^{2}}\)
= 120