Correct option is: (1) 53
\(A^{50}=A^{48}+A^{2}-I\)
\(=\mathrm{A}^{46}+2\left(\mathrm{~A}^{2}-\mathrm{I}\right)\)
\(=\mathrm{A}^{44}+3\left(\mathrm{~A}^{2}-\mathrm{I}\right)\)
\(=\mathrm{A}^{2}+24\left(\mathrm{~A}^{2}-\mathrm{I}\right)\)
\(=25 \mathrm{~A}^{2}-24 \mathrm{I}\)
\(=25\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]-24\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\)
\(=\left[\begin{array}{ccc}1 & 0 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1\end{array}\right]\)
Sum = 53