Correct option is : (D) neither injective nor surjective.
Given \(f : R \rightarrow R \ \ F(x) = x^2 - 4x + 5\)
For one-one
We known if f(x1) = f(x2)
\(\Rightarrow x 1 = x2 \)
Where \(x1, x2 \in R\)
\(\therefore \ f(x1)= x1{^2} - 4x1 + 5 \) …(1)
\(f(x2) = x2{^2} - 4 x2 + 5\) …(2)
equating (1) and (2)
\(x1{^2}- 4 x1 + 5 = x2{^2}- 4x2 + 5\)
\(x1{^2} - x2{^2} - 4x1 + 4x2 = 0\)
\((x1 - x2)(x1 + x2 )- 4(x1- x2) = 0\)
\(\Rightarrow (x1 - x2) (x1+ x2 -4) = 0\)
\(\Rightarrow x1 + x2 - 4 =0\)
\(\Rightarrow x1 = 4 - x2\)
\(\therefore \ x1 = 4 - x2\)
\(\therefore x1 \neq x2\)
\(\therefore \ f(x) \) in not one-one.
y = x2 – 4x + 5
y = (x – 2)2 + 5 – 4
y = (x – 2)2 +1
As (x – 2)2 > 0
\(\Rightarrow y -1 \geq 0\)
\(\Rightarrow y \geq 1\)
\(\therefore \) Range \((f) \in [1, \infty]\)
And codomain \(\in\) R
\(\therefore \) Range \(\neq\) Codomain
\(\therefore \) f(x) is not onto