Correct option is : (1) 2.66

\(=\text{Using}\ C_{e q}=\frac{\varepsilon_{0} A}{\frac{t_{1}}{\kappa_{1}}+\frac{t_{2}}{K_{2}}+\frac{t_{3}}{\kappa_{3}}}\)
\(\text{here}\ C_{0}=\frac{\varepsilon_{0} A}{d}, t_{1}=\frac{3 d}{8}, t_{2}=\frac{d}{2}, t_{3}=\frac{d}{8}\)
\(
K_{1}=K_{1}, \quad K_{2}=\frac{K_{1}}{1.25} \ \text{and} \ K_{3}=1\)
Given \(C_{\text {eq }}=2 C_{0}\)
\(
\begin{aligned}
\Rightarrow 2 C_{0}=\frac{\varepsilon_{0} A}{\frac{3 d}{8 K_{1}}+\frac{d \times 1.25}{2 K_{1}}+\frac{d}{8}}
\end{aligned}\)
\(
\begin{aligned}
& \Rightarrow \frac{2 \varepsilon_{0} A}{d}=\frac{\varepsilon_{0} A}{\frac{3 d}{8 K_{1}}+\frac{d}{2 K_{1}} \times \frac{5}{4}+\frac{d}{8}}
\end{aligned}
\)
\(
\begin{aligned}
\Rightarrow 2=\frac{1}{\frac{3}{8 K_{1}}+\frac{5}{8 K_{1}}+\frac{1}{8}} \Rightarrow K_{1}=\frac{8}{3}=2.66
\end{aligned}
\)