\( u=\left(x_2-x_1\right)=75-45=30 \mathrm{~cm}\)
\( \Delta u=\Delta x_2+\Delta x_1=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \mathrm{~cm}\)
\( v=\left(x_3-x_2\right)=135-75=60 \mathrm{~cm} \)
\( \Delta v=\Delta x_3+\Delta x_2=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \mathrm{~cm}\)

\( \therefore \frac{1}{v}-\frac{1}{u}=\frac{1}{f} \Rightarrow \frac{1}{60}+\frac{1}{30}=\frac{1}{f}\)
\( \therefore \mathrm{f}=20 \mathrm{~cm} \text { Also, } \frac{-d v}{v^2}+\frac{-d u}{u^2}=\frac{-d f}{f^2} \)
\(\Rightarrow \frac{d f}{f}=f\left[\frac{d v}{v^2}+\frac{d u}{u^2}\right]=20\left[\frac{1}{60^2}+\frac{1}{30^2}\right] \frac{1}{2} \)
\( \therefore \frac{d f}{f} \times 100=10\left[\frac{1}{36}+\frac{1}{9}\right]=\frac{50}{36}=1.38 \text { and } 1.39 \text { (both) }\)