Let A, B, C be the vertices of a triangle with position vectors a, b, c . Let D, E, F be the midpoints of BC, CA, AB respectively. Let S be the point of intersection of the perpendiculars drawn at D, E to BC, CA respectively.
let vector{OS = r}
now vector{OD = (b+c)/2, OE = (c+a)/2,OF = (a+b)/2}
vector{SD ⊥ BC, SE ⊥ CA}
vector{SD ⊥ BC => SD.BC = 0 => (OD - OS).(OC - OB)} = 0
=> vector[{(b+c)/2 - r}. (c-d)] = 0
=> vector{(b+c).(c-b)/2 = r.(c-b)}
=> vector{(c2-b2)/2 = r.c-r.b} (1)
Similarly vector{SE ⊥ CA => (a2-c2)/2 r.a - r.c} (2)
(1) + (2) => vector{(a2-b2)/2 = r.a - r.b} => vector{(a+b).(a-b)/2 = r.(a-b)}
=> vector{(a+b)/2.(a-b) - r.(a-b)} = 0
=> vector[{(a+b)/2.(a-b)}] = 0
=> vector{(OF - OS).(OA - OB)} = 0
=> vector{SF.BA} = 0
=> vector{SF ⊥ BA}
Perpendicular of F to AB passes through S.
Perpendicular bisectors of sides are concurrent.
