We will find voltages VA and VB by using Nodal analysis and then find the current through 4Ω resistor by dividing their difference by 4.
V2(1/5 + 1/4 + 1/j2) - VB/4 - (50∠30º)/5 = 0
∴ VA(9 −j10) − 5VB = 200 ∠30º ...(i)
Similarly, from node B, we have
VB(1/4 + 1/2 + 1/-j2) - VA/4 - (50 ∠ 90º)/2 = 0
∴ VB (3 + j2) −VA = 100 ∠90º = j 100 ...(ii)
VA can be eliminated by multiplying. Eq. (ii) by (9−j10) and adding the result.
∴ VB(42 −j12) = 1173 + j1000
or VB = (1541.4 ∠ 40.40º)/(43.68 ∠-15.9º) = 35.29∠56.3º = 19.58 + j29.36
Substituting this value of VB in Eq. (ii), we get
VA = VB(3 + j2) −j100 = (19.58 + j29.36) (3 + j2) −j100 = j27.26
∴ VA −VB = j 27.26 − 19.58 −j29.36 = − 19.58 −j2.1 = 19.69∠186.12º
∴ I2 = (VA −VB)/4 = 19.69∠186.12º/4
= 4.92∠186.12º