
(using C3 → C3 + C1)

(Taking out (α + β + γ) common from C1)

(Using R2 → R2 – R1 and R3 → R3 – R1)
Expanding along C3, we get
= (α + β + γ) [(β − α)(γ2 −α2) −(γ −α)(β2 − α2)]
= (α + β + γ) [(β − α)(γ −α)(γ + α) −(γ − α)(β − α)(β + α)]
= (α + β + γ) (β − α)(γ −α)[γ + α −β − α]
= (α + β + γ) (β − α)(γ −α)(γ −β)
= (α + β + γ) (α − β)(β − γ)(γ −α) = RHS