Given,
\(\sqrt{1 + x^2 + y^2 + x^2y^2} + xy \frac{dy}{dx} = 0\)
⇒ \(\sqrt{1 + y^2} \sqrt{1 + x^2} = - xy\frac{dy}{dx}\)
Integrating both sides, we get
⇒ \(\int \frac{\sqrt{1 + x^2}}x dx = - \int \frac y{\sqrt{1 + y^2}}dy\)
Substitute, 1 + y2 = t2 ⇒ 2ydy = 2tdt
⇒ \(\int \frac{\sqrt{1 + x^2}}x dx= - \int dt \)
\(= -t + c\)
\(= -\sqrt{1 + y^2 }+c\)
Now substitute, 1 + x2 = k2
⇒ 2xdx = 2kdk
⇒ \(\int \frac{k^2}{x^2}dk = - \sqrt{1 + y^2} +c\)
⇒ \(\int \frac{k^2}{k^2-1}dk = - \sqrt{1 + y^2} +c\)
⇒ \(\int\left[\frac{k^2 - 1}{k^2 - 1}+ \frac 1{k^2 - 1}\right]dk = - \sqrt{1 + y^2} +c\)
⇒ \(k + \frac 12 \log\frac{k - 1}{k + 1} = -\sqrt{1 + y^2}+ c\)
Since, \(\int \frac 1{x^2 - d^2}dx = \frac 1{2d}\log\frac{x - d}{x + d}\) + constant
\(\therefore \sqrt{1 + x^2}+ \frac 12 \log\frac{\sqrt{1 + x^2}-1}{\sqrt{1 + x^2}+ 1} + \sqrt{1+ y^2} = C\)