Given x + y = 60
⇒ y = 60 – x
Let S = xy3
= x (60 – x)3
ds/dx = x . 3(60 – x)2 (0 – 1) + (60 – x)3 . 1
= –3x(60 – x)2 + (60 – x)3
= (60 – x)2 + (–3x + 60 – x)
= (60 – x)2 (60 – 4x)
ds/dx = 0 ⇒ (60 – x)2 (60 – 4x) = 0
⇒ 60 – 4x = 0
⇒ 4x = 60
⇒ x = 15
d2s/dx2 = (60 – x)2 (–4) + (60 – 4x) 2 (60 – x) (–1)
= – 4 (60 –x)2 – 2 (60 – 4x) (60 – x)

∴ S is maximum at x = 15
∴ y = 60 – 15 = 45
Hence x = 15, y = 45.