Given equation is
6x3 – 11x2 + 6x –1 = 0 –––– (1)
Put y = 1/x so that 6/y3 – 11/y2 + 6/y –1 = 0
6 – 11y + 6y2 – y3 = 0
y3 – 6y2 + 11y – 6 = 0 ––– (2)
Roots of (1) are in H.P. ⇒ Roots of (2) are in A.P.
Let a – d , a, a + d be the roots of (2)
Sum = a – d + a + a + d = 6
3a = 6 ⇒ a = 2
Product = a(a2 – d2) = 6
2(4 – d2) = 6
4 – d2 = 3
⇒ d2 = 1, d = 1
a – d = 2 – 1 = 1, a = 2, a + d = 2 + 1 = 3
The roots of (2) are 1, 2, 3
The roots of (1) are 1, 1/2, 1/3