Let f(x) = x – sinx
⇒ f'(x) = 1 – cos x > 0, ∀ x ∈ (0, π/2)
Thus, f(x) is strictly increasing in (0, π/2)
⇒ f(x) > f(0)
⇒ x – sinx > 0
⇒ x > sinx
⇒ cos x < cos(sinx) ...(i)
Also, for all x in (0, π/2), 0 < cos x < 1
⇒ cos x < 1 ⇒ cos x > sin (cos x) ...(ii)
From (i) and (ii), we get,
sin (cosx) < cosx < cos(sinx)