Correct option (C) √3
We have
x2 + bx − 1 = 0 .... (1)
and x2 + x + b = 0
⇒ b = −x − x2
Substituting the value of b in Eq. (1), we get
x2 − x(x + x2) − 1 = 0
⇒ x3 + 1 = 0
⇒ (x + 1)(x2 − x + 1) = 0
Therefore, x = −1. Also,
x2 − x + 1 = 0
⇒ x = −ω, ω2
where ω is the cube root of unity. Now,
b = −(x + x2)
⇒ b = - (-ω + ω2) = ω - ω2 = i√3
⇒ |b| = √3