x + y + z = 6 ....(1)
x + 2y + 3z = 10 ...(2)
3x + 2y + λz = µ ...(3)
from (1) and (2)
if z = 0 ⇒ x + y = 6 and x + 2y = 10
⇒ y = 4, x = 2
(2,4,0)
if y = 0 ⇒ x + z = 6 and x + 3z = 10
⇒ z = 2 and x = 4
(4,0,2)
So, 3x + 2y + λz = µ
must pass through (2,4,0) and (4,0,2)
so 6 + 8 = µ ⇒ µ = 14
and 12 + 2λ = µ
12 + 2λ = 14 ⇒ λ = 1
so µ – λ2 = 14 – 1
= 13