Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
2.2k views
in Sets, Relations and Functions by (52.1k points)

Find fog and gof, if  

(i)  f(x) = ex, g(x) = loge x

(ii) f(x) = x2, g(x) = cos x

(iii) f(x) = |x|, g(x) = sin x

(iv) f(x) = x + 1, g(x) = ex

(v) f(x) = sin−1 x, g(x) = x2

1 Answer

+1 vote
by (51.0k points)
selected by
 
Best answer

(i) Given as f(x) = ex, g(x) = loge x

Let f: R → (0, ∞); and g: (0, ∞) → R

Let us calculate fog,

Clearly, the range of g is a subset of the domain of f.

fog: (0, ∞) → R

(fog)(x) = f(g(x))

= f(loge x)

= loge ex

= x 

Let us calculate gof,

Clearly, the range of f is a subset of the domain of g.

⇒ fog: R→ R

(gof)(x) = g(f(x))

= g(ex)

= loge ex

= x

(ii) f(x) = x2, g(x) = cos x

f: R→ [0, ∞); g: R → [−1, 1]

Let us calculate fog,

Clearly, the range of g is not a subset of the domain of f.

⇒ Domain (fog) = {x: x ∈ domain of g and g (x) ∈ domain of f}

⇒ Domain (fog) = x: x ∈ R and cos x ∈ R}

⇒ Domain of (fog) = R

(fog): R→ R

(fog)(x) = f(g(x))

= f(cos x)

= cos2 x

Let us calculate gof,

Clearly, the range of f is a subset of the domain of g.

⇒ fog: R→R

(gof)(x) = g(f(x))

= g(x2)

= cos x2

(iii) Given f(x) = |x|, g(x) = sin x

f: R → (0, ∞) ; g : R → [−1, 1]

Let us calculate fog,

Clearly, the range of g is a subset of the domain of f.

⇒ fog: R → R

(fog)(x) = f(g(x))

= f(sin x)

= |sin x|

Let us calculate gof,

Clearly, the range of f is a subset of the domain of g.

⇒ fog : R→ R

(gof)(x) = g(f(x))

= g(|x|)

= sin |x|

(iv) Given f(x) = x + 1, g(x) = ex

f: R → R ; g: R → [ 1, ∞)

Let us calculate fog:

Clearly, range of g is a subset of domain of f.

⇒ fog: R → R

(fog)(x) = f(g(x))

= f(ex)

= e+ 1

Let us compute gof,

Clearly, range of f is a subset of domain of g.

⇒ fog: R → R

(gof)(x) = g(f(x))

= g(x + 1)

= ex+1

(v) Given f(x) = sin−1 x, g(x) = x2

f: [−1,1] → [(-π)/2,π/2]; g : R → [0, ∞) 

Let us compute the fog:

Clearly, the range of g is not a subset of the domain of f.

Domain (fog) = {x: x ∈ domain of g and g (x) ∈ domain of f}

Domain (fog) = {x: x ∈ R and x2 ∈ [−1, 1]}

Domain (fog) = {x: x ∈ R and x ∈ [−1, 1]}

Domain of (fog) = [−1, 1]

fog: [−1,1] → R 

(fog)(x) = f(g(x))

= f(x2)

= sin−1(x2)

Let us compute the gof:

Clearly, the range of f is a subset of the domain of g.

fog: [−1, 1] → R

(gof)(x) = g(f(x))

= g(sin−1 x)

= (sin−1 x)2

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...