\(q(x) = \sqrt 3x^2 + 10x + 7\sqrt 3 \)
\(= \sqrt 3x^2 + 7x + 3x + 7\sqrt 3\)
\(= \sqrt 3x(x + \sqrt 3) + 7(x + \sqrt 3)\)
\(= (\sqrt 3x + 7) (x + \sqrt 3)\)
Zeroes of the polynomials are \(-\sqrt 3, \frac{-7}{\sqrt 3}\).
Sum of zeroes = \(\frac{-10}{\sqrt 3}\)
⇒ \(-\sqrt 3 - \frac7{\sqrt 3} = \frac{-10}{\sqrt 3}\)
⇒ \( \frac{-10}{\sqrt 3}= \frac{-10}{\sqrt 3}\)
Product of zeroes = \(\frac{7\sqrt 3}3\)
⇒ \(\frac{\sqrt 3x - 7}{\sqrt {30}} = 7\)
⇒ \(7 = 7\)
Hence, relationship verified.