Given as f(x) = x9 + 4x7 + 11
Differentiate the above equation with respect to x, we get
⇒ f'(x) = (d/dx)(x9 + 4x7 + 11)
⇒ f’(x) = 9x8 + 28x6
⇒ f’(x) = x6(9x2 + 28)
Also, as given x ϵ R
⇒ x6 > 0 and 9x2 + 28 > 0
⇒ x6 (9x2 + 28) > 0
⇒ f’(x) > 0
Thus, condition for f(x) to be increasing
Hence, f(x) is increasing on interval x ∈ R