Suppose f(x) = 2x3 – 24 x + 107
∴ f'(x) = 6 x2 – 24 = 6(x2 – 4)
For the local maxima and local minima we have f'(x) = 0
⇒ 6(x2 – 4) = 0
⇒ x2 = 4
⇒ x = ±2
As we first consider the interval [1, 3].
Now, we evaluate the value of f at the critical point x = 2 ∈ [1,3] and at the end points of the interval [1, 3].
f (2) = 2 (23)– 24 (2) + 107 = 75
f (1) = 2(1)3 – 24(1) + 107 = 85
f (3) = 2(3)3– 24 (3) + 107 = 89
Thus, the absolute maximum value of f(x) in the interval [1, 3] is 89 occurring at x = 3,
Now, we consider the interval [– 3, – 1].
Then, evaluate the value of f at the critical point x = – 2 ∈ [1, 3]
f (-3) = 2 (-3)3 – 24 (-3) + 107 = 125
f (-2) = 2 (-2)3 – 24 (-3) + 107 = 139
f (-1) = 2 (-1)3 – 24 (-2) + 107 = 129
Thus, the absolute maximum value when x = -2 is 139.