Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
5.4k views
in Derivatives by (65.6k points)

Find the value of x (Interval) for which the function is increasing or decreasing. 

(i) f(x) = 2x3 – 15x2 – 84x + 7 

(ii) f(x) = x4 – 2x3 + 1 

(iii) f(x) = x3 – 3x2 + 3x – 100 

(iv) f(x) = 2x2 – 96x + 5 

(v) f(x) = 10 – 6x – 2x2 

(vi) f(x) = 2x3 + 9x2 + 12x + 20

1 Answer

+1 vote
by (65.3k points)
selected by
 
Best answer

(i) Given 

f(x) = 2x3 – 15x2 – 84x + 7 

f'(x) = 6x2 – 30x – 84 

= 6(x2 – 5x – 14) = 6(x – 7) (x + 2) 

f(x) is increasing if f'(x) > 0 

(x – 7) (x + 2) > 0 

Case – 1 

x – 7 > 0 & x + 2 > 0 

x > 7 & x > -2 

x > 7 ⇒ (7, ∞) 

Case – 2: 

x – 7 < 0 & x + 2 < 0 

x < 7 & x < -2 

x < -2 ⇒ (-∞ , -2) U (7,∞) 

∴ Interval is (-∞ , -2) U (7,∞) 

f(x) is decreasing if f'(x) < 0 

(x – 7) (x + 2) 

x – 7 < 0 & x + 2 > 0 

Case -1: 

x < 7 & x > -2 

∴ -2 < x < 7 

Case – 2 

x – 7 > 0 & x + 2 < 0 

x > 7 & x < -2 (not possible) 

(ii) Given f(x) = x4 – 2x3 + 1 

f'(x) = 4x3 – 6x2 

= 2x2 (2x – 3) Here 2x2 > 0 

f(x) is increasing if f'(x) > 0 

⇒ 2x – 3 > 0 

x > \(\frac{3}{2}\)⇒ (\(\frac{3}{2}\), ∞) is the interval 

f(x) is decreasing if f‘(x) < 0 

2x – 3 < 0 x < \(\frac{3}{2}\)(-∞, \(\frac{3}{2}\)) is the interval` 

(iii) Given f(x) = x3 – 3x2 + 3x – 100 

f'(x) = 3x2 – 6x + 3 

= 3(x2 -2x + 1) 

= 3(x – 1)2 

f(x) is increasing 

f‘(x) > 0 ⇒ (x – 1)2 > 0 

increasing for all 

∵ f'(x) > 0 it will not be decreasing 

(iv) Given f(x) = 2x2 – 96x + 5 

f ‘(x) = 4x – 96 = 4(x – 24) 

f(x) is increasing if f’(x) > 0 

x – 24 > 0 

x > 24 

f(x) is decreasing if 

f'(x) < 0 x – 24 < 0 x < 24 

(v) f(x) = 10 – 6x – 2x2 

f'(x) = -6 -4x = -(6 + 4x) = -(6 + 4x) 

f(x) is increasing if -(6 + 4x) > 0 

⇒ 6 + 4x < 0 

⇒ 4x < -6 

⇒ x > –  –\(\frac{3}{2}\) 

f(x) is decreasing : if -(6 + 4x) < 0 

⇒ 6 + 4x > 0 ⇒ 4x > -6 

⇒ x > –\(\frac{3}{2}\) 

(vi) Given 

f(x) = 2x3 + 9x2 + 12x + 20 

f'(x) = 6x2 + 18x + 12 

= 6(x2 + 3x + 2) 

= 6(x + 2) (x + 1) 

f(x) is increasing if f ‘(x) > 0 

(x + 1) (x + 2) > 0 

Case 1: 

x + 2 > 0 and x + 1 > 0 

x > -2 and x > -1 

⇒ x > -1 ⇒ (-1, ∞) 

Case 2: 

x + 2 < 0 & x + 1 < 0 

x < -2 & x < -1 

x < -2 ⇒ (-∞, -2) 

f(x) is decreasing if f ‘(x) < 0 

(x + 2) (x + 1) < 0 

Case 1: 

x + 2 < 0 and x + 1 > 0 x < -2 and x > -1 Not possible 

Case – 2: 

x + 2 > 0 and x + 1 < 0 

x > -2 and x < -1 

x > -2 and x < -1 ⇒ -2 < x < -1.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...