Length of rectangle is ‘x’ unit.
Breadth of rectangle is ‘y’ unit.
Area of rectangle = length × breadth = xy
(x – 5) (y + 3) = xy – 9
xy + 3x – 5y – 15 = xy – 9
3x – 5y = -9 + 15
3x – 5y = 6 …………. (i)
(x + 3) (y + 2) = xy + 67
xy + 2x + 3y + 6 = xy + 67
2x + 3y = 67 – 6
2x + 3y = 61 ……….. (ii)
Solving the equation by Elimination method :
Multiplying eqn. (i) by and eqn. (ii) by 5
9x – 15y = 18 ………….. (iii)
10x + 15y = 305 ………… (iv)
From eqn. (iii) + eqn. (iv)

∴ x = 17 unit.
Substituting the value of ‘x’ in eqn. (i),
3x – 5y = 6
3(17) – 5y = 6
51 – 5y = 6
-5y = 6 – 51 – 5y = – 45
5y = 45
∴ y = \(\frac{45}{5}\)
∴ y = 9 units.
∴ Length of that rectangle, x = 17 unit breadth, y = 9 unit.