(i) \(\sqrt{0.0037}\)
Let y = √x, x = 0.0036, y = 0.06
∆x = 0.0037 – 0.0036 = -0.001
∵ y = √x
Diff. w.r.t. x

Hence, approximate value of \(\sqrt {0.0037}\) is 0.0608.
(ii) loge (10.02), when loge10 = 2.3026
Let y = loge x
Where x = 10, ∆x = 0.02
and x + ∆x = 10.02
∵ y = loge x
Diff. w.r.t. x,

From equation (i),
y + ∆y = loge (x + ∆x)
loge x + ∆y = loge (x + ∆x)
⇒ loge 10 + 0.002 = loge (10.02)
⇒ loge (10.02) = 2.3026 + 0.002
⇒ loge (10.02)= 2.3046
Hence, approximate value of loge (10.02) is 2.3046.