(i) Given equation kx(x – 2) + 6 = 0
or kx2 – 2kx + 6 = 0
Comparing it with ax2 + bx + c = 0
a = k, b = -2k and c = 6
Discriminant D = b2 – 4ac
= (-2k)2 – 4 × k × 6
= 4k2 – 24k
= 4k(k – 6)
For equal roots D = 0
4k(k – 6) = 0
⇒ k = 0 or k – 6 = 0
⇒ k = 0 or k = 6
For equal roots k = 6 because k = 0 is not possible
(ii) Given equation
x2 – 2(k + 1)x + k2 = o
Comparing it with ax2 + bc + c = 0
a = 1, b = -2(k + 1) and c = k2
Discriminant D = b2 – 4ac
= {-2(k + 1)}2 – 4 × 1 × k2
= 4(k2 + 2k + 1) – 4k2
= 4k2 + 8k + 4 – 4k2
= 8k + 4
For equal roots D = 0
⇒ 8k + 4 = 0
⇒ 8k = -4
⇒ k = -1/2
Thus k = -1/2
(iii) Given equation
2x2 + kr + 3 = 0
Comparing with ax2 + bx + c = 0
a = 2, b = k and c = 3
Discriminant D = b2 – 4ac
= k2 – 4 × 2 × 3
= k2 – 24
for equal roots D = 0
⇒ k2 – 24 = 0
⇒ k2 = 24
⇒ k = ±√24 = ±2√6
for equal roots k = ± 2√6
(iv) Given equation
(k + 1)x2 – 2(k – 1)x + 1 = 0
Comparing it by ax2 + bx + c = 0
a = (k + 1), b = -2(k – 1) and c = 1
Discriminant, D = b2 – 4ac
= {-2 {k – 1)}2 – 4 × (k + 1) × 1
= 4{k2 + 1 – 2k) – 4 (k + 1)
= 4k2 + 4 – 8k – 4k – 4
= 4k2 – 12k
= 4k(k – 3)
for equal roots, D = 0
⇒ 4k(k – 3) = 0
⇒ k(k – 3) =0
⇒ k = 0 or k = 3
for equal roots k = 3, since k = 0
(v) Given equation is
(k + 4)x2 + (k + 1)x + 1 = 0
Comparing it with ax2 + bx + c = 0
a = k + 4, b = k + 1, c = 1
Discriminant (D) = b2 – 4ac
= (k + 1 )2 – 4 × (k + 4) × 1
= k2 + 2k + 1 – 4k – 16
= k2 – 2k – 15
= k2 – 5k + 3k – 15
= k(k – 5) + 3(k – 5)
= (k – 5) (k + 3)
For equal roots, D = 0
⇒ (k – 5)(k + 3) = 0
⇒ k – 5 = 0 or k + 3 = 0
⇒ k = 5 or k = -3
(vi) Given equation kx2 – 5x + k = 0
Comparing it with ax2 + bx + c = 0
a = k, b = -5. c = k
Discriminant, (D) = b2 – 4ac
= (-5)2 – 4 × k × k
= 25 – 4k2
For equal roots D = 0
