Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
19.8k views
in Polynomials by (31.2k points)
closed by

Find value of k, for which following quadratic equations have real and equal roots.

(i) kx(x – 2) + 6 = 0

(ii) x2 – 2(k + 1)x + k2 = 0

(iii) 2x2 + kx + 3 = 0

(iv) (k + 1)x2 – 2(k – 1) x + 1 = 0

(v) (k + 4)x2 + (k + 1) x + 1 = 0

(vi) kx2 – 5x + k = 0

1 Answer

+1 vote
by (34.1k points)
selected by
 
Best answer

(i) Given equation kx(x – 2) + 6 = 0

or kx2 – 2kx + 6 = 0

Comparing it with ax2 + bx + c = 0

a = k, b = -2k and c = 6

Discriminant D = b2 – 4ac

= (-2k)2 – 4 × k × 6

= 4k2 – 24k

= 4k(k – 6)

For equal roots D = 0

4k(k – 6) = 0

⇒ k = 0 or k – 6 = 0

⇒ k = 0 or k = 6

For equal roots k = 6 because k = 0 is not possible

(ii) Given equation

x2 – 2(k + 1)x + k2 = o

Comparing it with ax2 + bc + c = 0

a = 1, b = -2(k + 1) and c = k2

Discriminant D = b2 – 4ac

= {-2(k + 1)}2 – 4 × 1 × k2

= 4(k2 + 2k + 1) – 4k2

= 4k2 + 8k + 4 – 4k2

= 8k + 4

For equal roots D = 0

⇒ 8k + 4 = 0

⇒ 8k = -4

⇒ k = -1/2

Thus k = -1/2

(iii) Given equation

2x2 + kr + 3 = 0

Comparing with ax2 + bx + c = 0

a = 2, b = k and c = 3

Discriminant D = b2 – 4ac

= k2 – 4 × 2 × 3

= k2 – 24

for equal roots D = 0

⇒ k2 – 24 = 0

⇒ k2 = 24

⇒ k = ±√24 = ±2√6

for equal roots k = ± 2√6

(iv) Given equation 

(k + 1)x2 – 2(k – 1)x + 1 = 0

Comparing it by ax2 + bx + c = 0

a = (k + 1), b = -2(k – 1) and c = 1

Discriminant, D = b2 – 4ac

= {-2 {k – 1)}2 – 4 × (k + 1) × 1

= 4{k2 + 1 – 2k) – 4 (k + 1)

= 4k2 + 4 – 8k – 4k – 4

= 4k2 – 12k

= 4k(k – 3)

for equal roots, D = 0

⇒ 4k(k – 3) = 0

⇒ k(k – 3) =0

⇒ k = 0 or k = 3

for equal roots k = 3, since k = 0

(v) Given equation is 

(k + 4)x2 + (k + 1)x + 1 = 0

Comparing it with ax2 + bx + c = 0

a = k + 4, b = k + 1, c = 1

Discriminant (D) = b2 – 4ac

= (k + 1 )2 – 4 × (k + 4) × 1

= k2 + 2k + 1 – 4k – 16

= k2 – 2k – 15

= k2 – 5k + 3k – 15

= k(k – 5) + 3(k – 5)

= (k – 5) (k + 3)

For equal roots, D = 0

⇒ (k – 5)(k + 3) = 0

⇒ k – 5 = 0 or k + 3 = 0

⇒ k = 5 or k = -3

(vi) Given equation kx2 – 5x + k = 0

Comparing it with ax2 + bx + c = 0

a = k, b = -5. c = k

Discriminant, (D) = b2 – 4ac

= (-5)2 – 4 × k × k

= 25 – 4k2

For equal roots D = 0

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...