Write 1 + 2xyz = x2 + y2 + z2 ⇔ 3 + 3xyz = 3/2(x2 + y2 + z2) + 3/2
=>3 + 3xyz = (x2 + y2 + z2) + 1/2[(x2 + 1) + (y2 + 1) + (z2 + 1)] ≥ x2 + y2 + z2 + x + y + z
(Use x2 + y2 + z2 ≥ xy + yz + zx and AM-GM: x2 + 1 ≥ 2x etc.)
=> 3 + 3xyz ≥ xy + yz + zx + x + y + z.
By adding 1 + xyz in both sides,
we get 4 + 4xyz ≥ 1 + x + y + z + xy + yz + zx + xyz = (1 + x)(1 + y)(1 + z).
Equality holds when x = y = z = 1.