Let PQ and PR are the tangents on circle from point P. OQ and OR are the radius of circle.

So, PQ ⊥ OQ and PR ⊥ OR
In right angled ∆POQ and ∆POR,
∠OQP = ∠ORP (each 90°)
hypotenuse PO = hypotenuse PO (common side)
and QQ = OR(equal radii of circle)
∴ ∆POQ = ∆POR (by RHS congruence)
⇒ ∠QPO = ∠RPO (CPCT)
⇒ ∠QPO = ∠RPO
= \(\frac { { 60 }^{ \circ } }{ 2 } \) = 30°
In right angled ∆OQP
tan 30° = \(\frac { OQ }{ PQ }\)
⇒ \(\frac { 1 }{ \sqrt { 3 } } \) = \(\frac { 3 }{ PQ }\) ⇒ PQ = 3\(\sqrt { 3 }\)
Since PQ and PQ are the tangents from point P. we know that tangents to a circle from an external points are equal.
So, PR = PQ
= 3\(\sqrt { 3 }\) cm