We have,
L.H.S.
= (a + b + c)3 – a3 -b3 – c3
= {(a + b + c)3 – (a)3} – (b3 + c3)
= (a + b + c – a){(a + b + c)2 + a(a + b + c) + a2} – (b + c){b2 – bc + c2)
[∵ x3 – y3 = (x – y)(x2 + xy + y2) and x3 + y3 = (x + y)(x2 – xy + y2)]
= (b + c){a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab + ac + a2} – (b + c)(b2 – bc + c2)
= (b + c)[3a2 + b2 + c2 + 3ab + 2bc + 3ca – b2 + bc – c2]
= (b + c)[3a2 + 3ab + 3bc + 3ca]
= 3(b + c)[a2 + ab + bc + ca]
= 3(b + c)[a(a + b) + c(a + b)]
= 3(b + c)(a + b)(a + c)
= 3(a + b)(b + c)(c + a)
= R.H.S.