Let length, breadth and height of the cuboid be l, b and h respectively, then
l + b + h = 19 …(i)
and diagonal = 11
⇒ \(\sqrt { { l }^{ 2 }+{ b }^{ 2 }+{ h }^{ 2 } }\) = (11)2
⇒ l2 + b2 + h2 = 121 …(ii)
Using (i), l + b + h = 19
Squaring both sides, we have
(l + b + h)2 = 192
l2 + b2 + h2 + 2 (lb + bh + hl) = 361
121 + 2 (lb + bh + hl) = 361
2 (lb + bh + hl) = 361 – 121
⇒ 2 (lb + bh + hl) = 240
Hence, the surface area of the cuboid is 240 cm2.