In the question is given to verify the property x × (y + z) = x × y + x × z
The arrangement of the given rational number is as per the rule of distributive property of multiplication over addition.
Then, (-½) × (¾ + ¼) = (-½ × ¾) + (-½ × ¼)
LHS = (-½) × (¾ + ¼)
= (-½) × ((3 + 1)/4)
= -½ × (4/4)
= -½ × 1
= -½
RHS = (-½ × ¾) + (-½ × ¼)
= (-3/8) + (-1/8)
= (-3 – 1)/8
= -4/8
= -½
By comparing LHS and RHS
LHS = RHS
∴ -½ = -½
Hence x × (y + z) = x × y + x × z