The centroid of a triangle divides each median in the ratio 2:1.
i. Point G is the centroid and seg CR is the median.

∴ l(GC) × 1 = 2 × 2.5
∴ l(GC) = 5
ii. Point G is the centroid and seg BQ is the median.

∴ 6 × 1 = 2 × l(GQ)
∴ 6/2 = l(GQ)
∴ 3 = l(GQ)
i.e. l(GQ) = 3
Now, l(BQ) = l(BG) + l(GQ)
∴ l(BQ) = 6 + 3
∴ l(BQ) = 9
iii. Point G is the centroid and seg AP is the median.

∴ l(AG) = 2 l(GP) …..(i)
Now, l(AP) = l(AG) + l(GP) … (ii)
∴ l(AP) = 2l(GP) + l(GP) … [From (i)]
∴ l(AP) = 3l(GP)
∴ 6 = 3l(GP) ...[∵ l(AP) = 6]
∴ 6/3 = l(GP)
∴ 2 = l(GP) i.e. l(GP) = 2
l(AP) = l(AG) + l(GP) …[from (ii)]
∴ 6 = l(AG) + 2
∴ l(AG) = 6 – 2
∴ l(AG) = 4