i. y3 – 27
= y3 – (3)3
Here, a = y and b = 3
∴ y3 – 27 = (y – 3)[y2 + y(3) + (3)2]
…[∵ a3 – b3 = (a – b) (a2 + ab + b2)]
= (y – 3)(y2 + 3y + 9)
ii. x3 – 64y3
= x3 – (4y)3
Here, a = x and b = 4y
∴ x3 – 64y3
= (x – 4y)[x2 + x(4y) + (4y)2] …[∵ a3 – b3 = (a – b)(a2 + ab + b2)]
= (x – 4y)(x2 + 4xy + 16y2)
iii. 27m3 – 216n3
= 27(m3 – 8n3) … [Taking out the common factor 27]
= 27[m3 – (2n)3]
Here, a = m and b = 2n
∴ 27m3 – 216n3
= 27{(m – 2n) [m2 + m(2n) + (2n)2]} ….[∵ a3 – b3 = (a – b) (a2 + ab + b2)]
= 27(m – 2n)(m2 + 2mn + 4n2)
iv. 125y3 – 1
= (5y)3 – 13
Here, a = 5y and b = 1
∴ 125y3 – 1 = (5y – 1) [(5y)2 + (5y)(1) + (1)2] …[∵ a3 – b3 = (a – b)(a2 + ab + b2)]
= (5y – 1) (25y2 + 5y + 1)
v. 8p3 - (27/p3)

vi. 343a3 – 512b3
= (7a)3 – (8b)3
Here, A = 7a and B = 8b
∴ 343a3 – 512b3 = (7a – 8b) [(7a)2 + (7a)(8b) + (8b)2] …[∵ A3 – B3 = (A – B)(A2 + AB + B2)] = (7a – 8b) (49a2 + 56ab + 64b2)
vii. 64x3 – 729y3 = (4x)3 – (9y)3
Here, a = 4x and b = 9y
∴ 64x3 – 729y3
= (4x – 9y) [(4x)2 + (4x) (9y) + (9y)2] …[∵ a3 – b3 = (a – b)(a2 + ab + b2)] = (4x – 9y) (16x2 + 36xy + 81y2)
viii. 16a3 - (128/b3)
