Given: [x]2 – 5 [x] + 6 = 0, where [ . ] denote the greatest integer function
To find: range of x
Explanation: we have
[x]2 – 5 [x] + 6 = 0
We will split the middle term, we get
⇒ [x]2 – 3 [x] -2[x] + 6 = 0
⇒ [x]([x]–3)-2([x]-3) = 0
⇒ ([x]-3)([x]-2) = 0
⇒ [x]-3 = 0 or [x]-2 = 0
⇒ [x] = 3 or [x] = 2
⇒ [x] = 2, 3
For [x] = 2, x ∈ [2,3)
For [x] = 3, x ∈ [3,4)
[x] ∈ [2,3) ∪ [3,4)
So, x ∈ [2,4]
Hence the correct answer is option (C).