Given : p(x) = x2 + 10x + 30

Now,
Let the zeroes of the quadratic polynomial be
α^' = α + 2β , β' = 2α + β
Then, α’ + β’ = α + 2β + 2α + β = 3α + 3β = 3(α + β)
α'β’ = (α + 2β) ×(2α + β) = 2α2 + 2β2 + 5αβ
Sum of zeroes = 3(α + β)
Product of zeroes = 2α2 + 2β2 + 5αβ
Then, the quadratic polynomial
= x2 – (sum of zeroes)x + product of zeroes
= x2 – (3(α + β))x + 2α2 + 2β2 + 5αβ
= x2 – 3( – 10)x + 2 (α2 + β2) + 5(30) {from eqn (1) & (2)}
= x2 + 30x + 2(α2 + β2 + 2αβ – 2αβ) + 150
= x2 + 30x + 2 (α + β)2 – 4αβ + 150
= x2 + 30x + 2( – 10)2 – 4(30) + 150
= x2 + 30x + 200 – 120 + 150
= x2 + 30x + 230
So, the required quadratic polynomial is x2 + 30x + 230