Proof: Consider the equation, sin x = sin y. Let us try to find the general solution for this trigonometric equation.
sin x = sin y
⇒ sin x – sin y = 0
⇒2cos (x + y)/2 sin (x – y)/2 = 0
⇒cos (x + y)/2 = 0 or sin (x – y)/2 = 0
Upon taking the common solution from both the conditions, we get:
x = nπ + (-1)ny, where n ∈ Z