(i) p = sinθ + cosθ

(ii) Given sinθ(1 + sin2 θ) = cos2 θ
Substitute sin2 θ = 1 – cos2 θ and take cos θ = c
Squaring (1) on both sides we get
sin2 θ(1 + sin2 θ)2 = cos4 θ
(1 – c2)(1 + 1 – c2) = c4
(1 – c2)(2 – c2)2 = c4
(1 – c2)(4 + c4 – 4c2) = c4
4 + c4 – 4c2 – 4c2 – c6 + 4c4 = c4
-c6 + 4c4 – 8c2 = -4
c6 – 4c4 + 8c2 = -4
ie cos 6θ – 4cos 4θ + 8cos2 θ = 4 = RHS
∴ Hence proved