Given:

Join DA and DC.
∠ADC = 90º (Angle in a semi-circle is a right angle).
∴ AB. BC = BD2
[From Geometry, BD is the mean proportional between AB and BC.]
⇒ AB. 6 = ( 6 \(\sqrt{3}\) )2 ⇒ AB = 18 cm
∴ Diameter of largest circle = AB + BC = (18 + 6) cm = 24 cm
∴ Area of shaded region
= Area of largest semi-circle – Sum of the areas of two smaller semi-circles
= \(\frac{\pi \times {12}^2}{2}\) - \(\big(\) \(\frac{\pi \times {9}^2}{2}\) + \(\frac{\pi \times {3}^2}{2}\) \(\big)\) = 72π – 45π
= 27π cm2.