Let AB be the tower and its shadows be BD and BC corresponding to the angle of elevations 60° and 45° respectively.

In Δ ABC, tan 45° = \(\frac{AB}{BC}\)
⇒ 1 = \(\frac{120}{BC}\) ⇒ BC = 120m
In Δ ABD, tan 60° = \(\frac{AB}{BD}\) ⇒ √3 = \(\frac{120}{BD}\)
⇒ BD = \(\frac{120}{\sqrt3} = \frac{120}{\sqrt3}\times\frac{\sqrt3}{\sqrt3}=\frac{120\sqrt3}{3}=40\sqrt3\) metres.
∴ x = BC - BD = 120 - 40√3 = 120m – 69.28 m
= 50.72 m = 51 m ( to the nearest m).