sec θ = √2 ⇒ cos θ = \(\frac1{\sqrt2}\)
∴ sin θ = ±\(\sqrt{1-cos^2\theta}\) = ±\(\sqrt{1-\frac12}\) = ±\(\frac1{\sqrt2}\)
Since θ lies in the fourth quadrant, so sin θ is –ve and cos q is +ve.
∴ sin θ = \(-\frac1{\sqrt2}\), cosec θ = √2
tan θ = \(\frac{sin\,\theta}{cos\,\theta}\) = \(-\frac1{\sqrt2}\) x \(\frac{\sqrt2}{1}\) = –1 ⇒ cot θ = –1
∴ \(\frac{1+tan\,\theta+cosec\,\theta}{1+cot\,\theta-cosec\,\theta}\) = \(\frac{1-1-\sqrt2}{1-1+\sqrt2}= -1.\)