(c) \(\frac{9}{13}.\)
Let \(\sqrt{\frac{x}{1-x}}\) = y. Then, the given equation reduces to
y + \(\frac{1}{y}=\frac{13}{6}\) ⇒ 6 (y2 + 1) = 13 y
⇒ 6y2 – 13y + 6 = 0 ⇒ 6y2 – 9y – 4y + 6 = 0
⇒ 3y (2y – 3) – 2(2y – 3) = 0
⇒ (3y – 2) (2y – 3) = 0 ⇒ y = \(\frac{2}{3}\) and \(\frac{3}{2}\)
when y = \(\frac{2}{3}\), \(\sqrt{\frac{x}{1-x}}\) = \(\frac{2}{3}\) ⇒ \(\frac{x}{1-x}\) = \(\frac{4}{9}\)
⇒ 9x = 4 – 4x ⇒ 13x = 4 ⇒ x = \(\frac{4}{13}\)
when y = \(\frac{3}{2}\), \(\sqrt{\frac{x}{1-x}}\) = \(\frac{3}{2}\) ⇒ \(\frac{x}{1-x}\) = \(\frac{9}{4}\)
⇒ 4x = 9 – 9x ⇒ 13x = 9 ⇒ x = \(\frac{9}{13}.\)