(a) ) 1 + 2 cos 2α

Let the height of the tower PQ = h metres.
Given, ∠PAQ = α, ∠PBQ = 2α, ∠PCQ = 3α.
∴ In rt. Δ PAQ, tan α = \(\frac{PQ}{AQ}\) = \(\frac{h}{AQ}\)
⇒ AQ = h cot α ...(i)
In rt. Δ PBQ, tan 2α = \(\frac{PQ}{BQ}\) = \(\frac{h}{BQ}\)
⇒ BQ = h cot 2α ...(ii)
In rt. Δ PCQ, tan 3α = \(\frac{PQ}{CQ}\) = \(\frac{h}{CQ}\)
⇒ CQ = h cot 3α ...(iii)
∴ From (i) and (ii), AB = AQ – BQ = h cot α – h cot 2α ...(iv)
From (iv) and (iii), BC = BQ – CQ = h cot 2α – h cot 3α ...(v)
∴ From (iv) and (v), we have

= 3 – 2 (1 – cos 2α) = 1 + 2 cos 2α.