(b) 40 m
Let PQ be the vertical pole of height h metres.
Let A be a point on PQ such that PA = \(\frac{3}{4}h\),
and AQ = \(h-\frac{3}{4}h\) = \(\frac{1}{4}h\).

Let the portion PA of the pole subtend an angle θ1 at the observation point O such that QO = 40 m.
Let AQ subtend θ2 at 0.
Then,
θ1 = tan-1\((\frac{3}{5})\)
⇒ tan θ1 = \(\frac{3}{5}\) ...(i)
In rt. Δ AOQ,
tan θ2 = \(\frac{AQ}{QO}\)
⇒ tan θ2 = \(\frac{h}{160}\) ...(ii)
In rt. Δ POQ,
tan (θ1 + θ2) = \(\frac{PQ}{QO}=\frac{h}{40}\)
⇒ \(\frac{tan\,\theta_1\,+\,tan\,\theta_2}{1-\,tan\,\theta_1\,tan\,\theta_2}=\frac{h}{40}\) [From eqns (i) and (ii)]
⇒ \(\frac{5(h\,+\,96)}{800\,-\,3h}=\) \(\frac{h}{40}\)
⇒ h2 – 200h + 6400 = 0
⇒ (h – 160) (h – 40) = 0
⇒ h = 160 or h = 40.
According to the given options one of the possible heights = 40 m.