Since sin A > 0 and \(\frac{\pi}{2}\) < A < π, then A is in II Quadrant.
Sin A = \(\frac{3}{5}\)
⇒ sin2A = \(\frac{9}{25}\)
∴ cos2A = 1 – \(\frac{9}{25}\) = \(\frac{16}{25}\)
⇒ cos A = \(\frac{-4}{5}\) (in II Quadrant)
Now,
tanA = \(\frac{sin\,A}{cos\,A}\)
= \(\frac{3/5}{4/5}\) = \(-\frac{3}{4}\)
And,
tan 2A = \(\frac{2tan\,A}{1-tan^2\,A}\)
= \(\frac{2(-3/4)}{1-(-3/4)^2}\)
= \(\frac{-6/4}{7/16}\)
= \(-\frac{24}{7}\)