Given,
sec β = \(\frac{-5}{3}\)
sec2β = \(\frac{25}{9}\)
tan2β = \(\frac{25}{9}\)-1 = \(\frac{16}{9}\)
tan β = ±\(\frac{4}{3}\)
tan β = \(\frac{-4}{3}\) (\(\frac{\pi}{2}\)< β < π)
And, cot α = \(\frac{1}{2}\)
∴ tan α = 2, (∵ \(\frac{\pi}{2}\)< α <\(\frac{3\pi}{2}\))
Now,
tan (α + β) = \(\frac{tanα+tanβ}{1-tanα\,tanβ}\)
\(= \frac{2+(\frac{-4}{3})}{1-2(\frac{-4}{3})}\)
= \(\frac{6-4}{3+8}\)
= \(\frac{2}{11}\)