We know that,
tan (A + B) = \(\frac{tan\,A+tan\,B}{1-tan\,A\,tan\,B}\)
∴ tan(A + B) = \(\frac{\frac{a}{a+1}+\frac{1}{2a+1}}{1-(\frac{a}{a+1})(\frac{1}{2a+1})}\)
⇒ tan(A + B) = \(\frac{a(2a+1)+(a+1)}{(a+1)(2a+1)-a}\)
⇒ tan(A + B) = \(\frac{2a^2+2a+1}{2a^2+2a+1}\)
⇒ tan(A + B) = 1
⇒ tan(A + B) = tan \((\frac{x}{4})\)
⇒ A + B = \(\frac{x}{4}\)