It is given that x lies in 3rd quadrant.
∴ π < x < \(\frac{3\pi}{2}\)
⇒ \(\frac{\pi}{2}\)<\(\frac{\pi}{2}\)<\(\frac{3\pi}{4}\)
⇒ \(\frac{x}{2}\)lies in 2nd quadrant.
⇒ cos x < 0, sin \(\frac{x}{2}\)> 0 and tan < 0
∴ cos\(\frac{x}{2}\) = ± \(\sqrt\frac{1+cos\,x}{2}\)
⇒ cos\(\frac{x}{2}\) = - \(\sqrt\frac{1+cos\,x}{2}\)
⇒ cos\(\frac{x}{2}\) = - \(\sqrt\frac{1-1/3}{2}\) = \(\sqrt\frac{2}{3}\)
∴ tan \(\frac{x}{2}\) = \(\frac{sin\,x/2}{cos\,x/2}\) = \(\frac{\sqrt\frac{2}{3}}{\frac{-1}{3}}\) = \(-\sqrt{2}\)