Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
1.6k views
in Determinants by (27.4k points)
closed by

Evaluate the following determinants :

i. \(\begin{vmatrix} x &-7 \\[0.3em] x & 5x+1 \\[0.3em] \end{vmatrix}\)

ii. \(\begin{vmatrix} cos\,\theta &-sin\,\theta \\[0.3em] sin\,\theta & cos\,\theta \\[0.3em] \end{vmatrix}\)

iii. \(\begin{vmatrix} cos\,15° &-sin\,15° \\[0.3em] sin\,75° & cos\,75° \\[0.3em] \end{vmatrix}\)

iv. \(\begin{vmatrix} a+ib &c+id \\[0.3em] -c+id & a-ib \\[0.3em] \end{vmatrix}\)

1 Answer

+1 vote
by (27.0k points)
selected by
 
Best answer

i. Let A = \(\begin{vmatrix} x &-7 \\[0.3em] x & 5x+1 \\[0.3em] \end{vmatrix}\)

⇒ |A| = x(5x + 1) – (–7)x 

|A| = 5x2 + 8x

ii. Let A = \(\begin{vmatrix} cos\,\theta &-sin\,\theta \\[0.3em] sin\,\theta & cos\,\theta \\[0.3em] \end{vmatrix}\)

⇒ |A| = cosθ × cosθ – (–sinθ) x sinθ 

|A| = cos 2θ + sin 2θ 

|A| = 1

iii. Let A = \(\begin{vmatrix} cos\,15° &-sin\,15° \\[0.3em] sin\,75° & cos\,75° \\[0.3em] \end{vmatrix}\)

⇒ |A| = cos15° × cos75° + sin15° x sin75° 

|A| = cos(75 – 15)° 

|A| = cos60° 

|A| = 0.5.

iv. A = \(\begin{vmatrix} a+ib &c+id \\[0.3em] -c+id & a-ib \\[0.3em] \end{vmatrix}\)

⇒ |A| = (a + ib)( a – ib) – (c + id)( –c + id) 

= (a + ib)( a – ib) + (c + id)( c – id) 

= a2 – i2 b2 + c2 – i2 d2 = a2 – (–1)b2 + c2 – (–1)d2 

= a2 + b2 + c2 + d2

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...