i. Let A = \(\begin{vmatrix} x &-7 \\[0.3em] x & 5x+1 \\[0.3em] \end{vmatrix}\)
⇒ |A| = x(5x + 1) – (–7)x
|A| = 5x2 + 8x
ii. Let A = \(\begin{vmatrix} cos\,\theta &-sin\,\theta \\[0.3em] sin\,\theta & cos\,\theta \\[0.3em] \end{vmatrix}\)
⇒ |A| = cosθ × cosθ – (–sinθ) x sinθ
|A| = cos 2θ + sin 2θ
|A| = 1
iii. Let A = \(\begin{vmatrix} cos\,15° &-sin\,15° \\[0.3em] sin\,75° & cos\,75° \\[0.3em] \end{vmatrix}\)
⇒ |A| = cos15° × cos75° + sin15° x sin75°
|A| = cos(75 – 15)°
|A| = cos60°
|A| = 0.5.
iv. A = \(\begin{vmatrix} a+ib &c+id \\[0.3em] -c+id & a-ib \\[0.3em] \end{vmatrix}\)
⇒ |A| = (a + ib)( a – ib) – (c + id)( –c + id)
= (a + ib)( a – ib) + (c + id)( c – id)
= a2 – i2 b2 + c2 – i2 d2 = a2 – (–1)b2 + c2 – (–1)d2
= a2 + b2 + c2 + d2